skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lomeli, Luis Martinez"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    The haematopoietic system has a highly regulated and complex structure in which cells are organized to successfully create and maintain new blood cells. It is known that feedback regulation is crucial to tightly control this system, but the specific mechanisms by which control is exerted are not completely understood. In this work, we aim to uncover the underlying mechanisms in haematopoiesis by conducting perturbation experiments, where animal subjects are exposed to an external agent in order to observe the system response and evolution. We have developed a novel Bayesian hierarchical framework for optimal design of perturbation experiments and proper analysis of the data collected. We use a deterministic model that accounts for feedback and feedforward regulation on cell division rates and self-renewal probabilities. A significant obstacle is that the experimental data are not longitudinal, rather each data point corresponds to a different animal. We overcome this difficulty by modelling the unobserved cellular levels as latent variables. We then use principles of Bayesian experimental design to optimally distribute time points at which the haematopoietic cells are quantified. We evaluate our approach using synthetic and real experimental data and show that an optimal design can lead to better estimates of model parameters. 
    more » « less